

3rd Annual

SI@UCF Programming Competition
Camp

Contest #1

 July 10, 2017

Problems

Letter Problem Name Filename

A Ant Clans antclans

B Bernard bernard

C CEO Queue ceo

D Crazy Math crazy

E Fortunate Farmland farmland

F Mo' Money money

G Grand Theft Otto otto

H Safe Square square

I Trading Cards trading

J Clips of Video video

Problem A: Ant Clans
Filename: antclans

Time limit: 5 seconds

An ant dynasty has decided to move into a giant ant hill consisting of n burrows. The dynasty

has a complicated social structure formed by a coalition of k ant clans, where each clan doesn’t

get along well with the others. To keep the peace, the ant emperor wants to partition the

burrows into k equally-sized districts (one per clan), so that no ant from any clan should be able

to reach any ant of an opposing clan. After deciding on the districts, the ants will drill tunnels

between certain carefully chosen pairs of burrows so ants in each clan can travel among all the

burrows allocated to the district for the clan. The ant emperor would like to know the cheapest

cost possible for forming his districts and building the resulting tunnels.

Input

The first line of input contains 3 space separated integers: n (1 ≤ n ≤ 20),

m (1 ≤ m ≤
𝑛(𝑛−1)

2
) and k (1 ≤ k ≤ n), representing the number of burrows, number of possible

tunnels that can be drilled, and the number of districts to form. Burrows are labeled with

identifiers [1, n] .

This is followed by m lines each containing 3 space separated integers: i (1 ≤ i ≤ n),

j (1 ≤ j ≤ n, i ≠ j), and c (1 ≤ c ≤ 100) meaning that the burrow labeled i can be connected by a

tunnel to the burrow labeled j with cost c.

Output

On a line by itself, print the minimum cost possible of the desired partition, or -1 if such a district

plan is impossible.

Samples

Input Output

4 4 2

1 2 300

2 3 200

3 4 100

4 1 8

208

6 4 3

1 2 3

2 3 4

4 5 6

5 6 7

-1

 Problem B: Bernard
Filename: bernard

Time limit: 2 seconds

Bernard the bear has finally woken up from hibernation and is very hungry. He walks over to the

nearest river and sees all the different kinds of fish swimming in a line, some fish more delicious

looking than others. Sneaking up behind one of the fish, Bernard swipes and catches the fish. In

the process, he was seen by the nearby fish and they swam away, not looking to become lunch

today. Distraught that he can’t catch all the fish for his lunch, Bernard now wonders what the

most delicious lunch he can have given that some of the nearby fish will swim away after each

time he catches one.

Given the deliciousness of fish in their current order in the river and an integer representing the

distance of which fish can see, find the max sum of deliciousness that Bernard can have for his

lunch. Each fish is located one unit away from another. If the fish can see k units away, and

Bernard catches a fish at location x, the fish from [x – k, x – 1] and [x + 1, x + k] will swim away

and cannot be caught.

Input

The first line will contain two space separated integers, n (1 ≤ n ≤ 105) and k (1 ≤ k ≤ 10),

representing the number of fish in the river and the distance away the fish can see Bernard

catch another fish. The next line will contain n space separated integers xi (1 ≤ xi ≤ 109),

representing the deliciousness of fish i.

Output

Output a single integer on a line by itself, representing the maximum sum of deliciousness that

Bernard can have for his lunch.

Samples

Input Output

10 2

20 4 12 17 19 15 2 5 1 13

52

10 4

8 28 1 9 28 2 9 1 27 2

55

Problem C: CEO Queue
Filename: ceo

Timelimit: 3 seconds

The Grandestine made a two player online game similar to chess but with more pieces and free-

to-play mechanics to rake in the bucks. Each player is given a rating that starts out at 0 and

goes up or down as they win or lose games. Grand implemented a queue system that attempts

to pair up players with similar ratings. Whenever a player enters the queue the game creates a

range centered around that player’s rating that expands over time which specifies acceptable

opponent ratings. The range expands by 1 in each direction per unit time. For example, if a

player rated 2050 entered the queue at time 0, at time 40 that player’s range will be from 2010

to 2090. For a pair of players to be matched up, at least one of the players’ ratings must fall

within their opponent's rating range. Expanding on the previous example, if another player

entered the queue at time 70 with rating 2150 he could be paired up with the first player at time

100 when the first player’s range is 1900 to 2150 and the second player’s range is 2120 to

2180. If instead the second player had a rating of 1990 he would have been immediately paired

with the first player when he entered the queue at time 70 when the first player’s range was

1980 to 2120. The queue pairs up players as soon as possible. In the event that multiple pairs

of players can be matched at the same time, priority is given to the pair that contains the player

who has been in the queue the longest. If there are multiple pairs that share this player, the

tiebreaker is how long the other player of the pair has been in the queue. It is guaranteed that

players do not join the queue at the same time and that no two players share the same rating.

Once a player is paired up for a match, the player will not be placed back into the queue. Thus,

all players play either 0 or 1 match.

Grand is interested in the queue wait times for the players. In particular he wants to know how

many players spent at least w time units waiting in the queue without being matched.

Input

The first line of input contains two space separated integers n (1 ≤ n ≤ 105) and

w (1 ≤ w ≤ 108), the number of players that will join the queue and the number of minutes for

the input query. The following n lines will contain information about each player. The ith of these

lines will contain two space separated integers: qi (0 ≤ qi ≤ 108) and

ri (0 ≤ ri ≤ 108), the time the ith player enters the queue and the ith player’s rating, respectively.

The players are given in strictly increasing order of queue times.

Output

Output a single integer, the number of players that waited at least w time units in the queue

without being matched.

Samples

Input Output

3 10

10 1000

11 1200

50 1001

2

6 200

0 0

20 1000

30 510

40 400

50 300

320 500

4

Explanation of Sample Input 1:

The players rated 1000 and 1001 get matched up at time 50. The player rated 1200 is stuck in

the queue forever.

Explanation of Sample Input 2:

-The players rated 510 and 400 get paired at time 140

-The players rated 0 and 300 get paired at time 300

-The players rated 1000 and 500 get paired at time 520

Problem D: Crazy Math
Filename: crazy

Time limit: 3 seconds

Arup loves math. Many love the Fibonacci sequence, but true mathematicians love to generalize

results. As such, Arup prefers looking at the Generalized Fibonacci Sequence that is defined as

follows, where a and b are constants:

g(0) = a

g(1) = b

g(n) = g(n-1) + g(n-2), for all integers n > 1

For various Generalized Fibonacci Sequences, Arup would like to know the nth term of the

sequence. Can you write a program to do it for him? Additionally, since Generalized Fibonacci

numbers get very big quickly, Arup would like you to calculate the final result MOD 109.

Input

The input consists of three non-negative, space separated integers: a (a ≤ 100), b (b ≤ 100),

and n (n ≤ 248), the first term of the Generalized Fibonacci sequence, the second term of the

Generalized Fibonacci sequence and the Generalized Fibonacci number Arup wants you to

calculate, respectively.

Output

The output will be a single integer, the nth Generalized Fibonacci number MOD 109,

corresponding to the input.

Samples

Input Output

3 4 1 4

Input Output

1 1 3749999997 499999999

Input Output

17 6 2 23

Problem E: Fortunate Farmland
Filename: farmland

Time limit: 2 seconds

The country of Fortunate Farmland judges its success differently than most nations. Rather than

wanting to achieve a maximum GDP or maximize the number of millionaires in the country, the

country aims to maximize the minimum income of its citizens. In order to improve this minimum

value, the country has a fund set aside (collected from taxes) and will use all the money in that

fund to raise incomes in such a way as to maximize the minimum income of all citizens.

Take the following small example. Let's say that there are 10 citizens with the following initial

incomes in Farmland Dollars: 12, 8, 3, 9, 15, 22, 27, 13, 77 and 18. Now, let's say that the

Fortunate Farmland government has a total of 30 Farmland Dollars to distribute amongst its

citizens. Note that we can only pay integer amounts of Farmland Dollars to each citizen. The

government would pay 3 Farmland Dollars to the first person, 7 to the second person, 12 to the

third person, 6 to the fourth person and 2 to the 8th person. After these payments, the new

income list (in Farmland Dollars) would be: 15, 15, 15, 15, 15, 22, 27, 15, 77 and 18. Now, the

minimum income of any citizen is 15 Farmland Dollars.

Given the initial incomes of each citizen in Fortunate Farmland as well as how much money the

government of Fortunate Farmland has to distribute to each citizen (in integer increments of

Farmland Dollars) determine the minimum income of any citizen of Fortunate Farmland after the

money has been distributed. As previously stated, the government of Fortunate Farmland

always distributes this money in such a way as to maximize the minimum income of its citizens,

within the restrictions of giving integer Farmland Dollars to some of its citizens.

Input

The first line of input will contain two space-separated positive integers, c (c ≤ 105),

representing the number of citizens of Fortunate Farmland and t (t ≤ 1012, t/c ≤ 109), the amount

Farmland Dollars to be distributed amongst the citizens. The following c lines contain one

positive integer each, mi (mi ≤ 109), representing the income of the ith citizen of Fortunate

Farmland in Farmland Dollars.

Output

Output a single line with the minimum income amongst all the citizens of Fortunate Farm after

the government makes its distribution.

Samples

Input Output

10 30

12

8

3

9

15

22

27

13

77

18

15

5 100

1

2

3

4

10

24

Problem F: Mo’ Money
Filename: money

Time limit: 2 seconds

Max has a number of coins and wants to know how many ways he can use some or all of the

coins to reach a target value. Can you write a program to help him out?

Input

The first line of input will contain two space separated positive integers, n (n ≤ 15), the number

of coins Max has, and t (t ≤ 106), the target value he wants to reach. The second line of input

will contain n space separated positive integers, a1 through an, where ai (ai ≤ 5*105) is the value

of the ith coin.

Output

Output a single integer on a line by itself, representing the number of ways Max can combine

his coins to reach his target value.

Samples

Input Output

6 20

3 10 4 7 3 6

6

10 3500

1000 500 750 250 100 800 1200 900 1300 3000

9

Explanation of Sample Input 1:

Here are the sets of coins that add up to a value of 20:

1. {coin1, coin2, coin3, coin5}

2. {coin1, coin2, coin4}

3. {coin1, coin3, coin4, coin6}

4. {coin2, coin3, coin6}

5. {coin2, coin4, coin5}

6. {coin3, coin4, coin5, coin6}

Notice that this set happens to have two different coins with the same value, 3, but the two coins

are treated as distinct coins.

Problem G: Grand Theft Otto
Filename: otto

Time limit: 1 second

Otto is late for the programming contest that he's supposed to compete in today! The time now

is t = 0; Otto just woke up at his house, which is d1 meters away from the site of the contest.

Luckily, Otto prepared so much for waking up yesterday that he can immediately leave his

house and jump into his car, which is also considered d1 meters away from the contest at t = 0.

Because Otto is also a certain type of superhero (or supervillain, depending on perspective), he

can transform his body into electricity and possess machines (like cars) and start driving them

immediately. That's actually how he starts using his car as he leaves his house.

The road he takes from his house to the contest site is a straight-line road with n cars parked on

the side of the road, including Otto's car. Each of these cars is indexed 1 through n, and car i is

parked di meters away from the contest site. While possessing car indexed i, Otto can travel vi

meters per second towards the contest site, without needing any time to accelerate. He can also

instantaneously switch the car that he is possessing with another whenever the other car is

parked and the same distance from the contest as the car he is currently possessing. In such a

situation, the new car will instantaneously accelerate to its fastest speed and the old car will

stop immediately. Of course, such a switch of car usage does not always have to happen.

Input

The first line of input contains a single positive integer n (n ≤ 105), the number of cars. n lines

follow, each with two space-separated positive integers each. The ith of these lines will denote

that car i is parked di meters away from the contest site and has a top speed of vi meters per

second. The cars will be listed in decreasing order of their distance from the contest.

Output

Output the minimum amount of time it will take for Otto to arrive at the contest site, in seconds.

Solutions will be considered correct if their output differs from the judge output by less than 10-4

seconds.

Samples

Input Output

2

4 1

2 2

3.00000

3

5 1

4 2

3 3

2.50000

5

7 2

5 6

4 3

4 6

3 9

1.66667

Problem H: Safe Square
Filename: square

Time limit: 1 second

Simon lives in a rectangular grid. At any given time, he occupies a single square on the grid.

Some of the squares on the grid he lives in have snakes and he can not occupy those squares.

In fact, he dislikes snakes so much, that he prefers not to occupy any square where half or more

of the adjacent squares contain snakes. Two squares are adjacent if they share a corner, so the

maximum number of squares adjacent to any square is 8. Simon considers these squares to be

dangerous squares, as well as squares with snakes. He considers all other squares to be safe

squares. Help Simon figure out how many squares on the grid in which he lives are safe

squares.

Input

The first line of input contains two space separated integers, r (1 ≤ r ≤ 100) and c (1 ≤ c ≤ 100,

rc > 1), the number of rows and columns, respectively, on the grid in which Simon lives. The

following r lines contain c characters each, either ‘.’ or ‘S’. A dot (.) indicates a square without a

snake and a capital S indicates a square with a snake. The jth character on the ith of these lines

represents the contents of the square on row i, column j of the grid in which Simon lives.

Output

Output a single integer representing the number of safe squares on the input grid in which

Simon could live.

Samples

Input Output

3 5
.....

S.S.S

SS.S.

6

5 6

S.S.S.

.S.S.S

S.S.S.

.S.S.S

S.S...

4

Problem I: Trading Cards
Filename: trading

Time limit: 1 second

Alice and Carl love collecting trading cards. They both have large collections, and want to know

how much their collections are worth. Both of their collections consist of several types of cards,

each with an associated value.

Input

The first line of input consists of a single integer, n (1 ≤ n ≤ 200), the number of card types Alice

has. The second line of input consists of n integers, a1 through an, where ai represents the value

of Alice’s ith card type (1 ≤ ai ≤ 100). The third of input consists of n integers, b1 through bn,

where bi represents how many cards of the ith type Alice has (1 ≤ bi ≤ 100).

The fourth line of input consists of a single integer, m (1 ≤ m ≤ 200), the number of card types

Carl has. The fifth line of input consists of m integers, c1 through cm, where ci represents the

value of Carl’s ith card type (1 ≤ ci ≤ 100). The sixth of input consists of m integers, d1 through

dm, where di represents how many cards of the ith type Carl has (1 ≤ di ≤ 100).

Output

On a single line, output two space separated integers: the value of Alice’s collection and the

value of Carl’s collection, respectively.

Samples

Input Output

4

1 2 3 4

3 5 3 1

3

10 4 60

3 20 1

26 170

Problem J: Clips Of Video
Filename: video

Timelimit: 5 seconds

A Youtube Poop is a type of video which is a modification of another video, in which the

modified video consists of several (possibly duplicate) clips of someone speaking in the original

video, with an ordering which makes it sound like the speaker is saying something else.

Youtube Poops are usually considered humorous and crude, but are almost universally

considered of much higher quality when the Youtube Poop does not need to use as many clips

to produce the desired mangled-up text the creator of the Youtube Poop intends.

Let's say string A represents the speech given in an original video, and we want to create a

Youtube Poop of the original video in which string B represents the speech given in our Youtube

Poop. What, then, is the minimum amount of substrings of A needed to form string B?

Input

The first line of input consists of the string A (1 ≤ |A|≤ 105). The second line of input consists of

the string B (1 ≤ |B| ≤ 105). All strings will only contain lower-case Latin letters.

Output

Output the minimum number of substrings of A necessary to form B. If it is not possible to take

substrings of A to make B, output -1.

Samples

Input Output

abcbcd

abcd

2

iamsmart

iamdumb

-1

asmallmallinmalta

atallmallinlima

5

Explanation of Sample Input 3:

The first substring is "a" starting at position 17 in A, followed by "ta" starting at position 16,

followed by "llmallin" starting at position 5, followed by "li" starting at position 10, followed by

"ma" starting at position 3.

