
Problem A: Find My Arup
Filename: arup

Time limit: 2 seconds

As everyone has an Arup, a brilliant idea for the next killer app is obviously one that can find

your Arup. But how can you ensure that you will find your Arup and not someone else’s Arup.

Your Arup is special and you cannot settle for finding just any old Arup.

That is why the find my Arup app will feature special advanced Arup Locating TechnologyTM. To

help find your Arup, other Arup’s will be used as Telepathic Arup BeaconsTM. Specifically, each

Arup 𝑖, not your Arup, is currently in the position (𝑥𝑖, 𝑦𝑖). Your Arup is in some position (𝑥𝑎,𝑦𝑎).

Each Arup, not your Arup, will send the result of the following function to your phone:

𝑑(𝑖) = 𝑚𝑎𝑥(|𝑥𝑖 − 𝑥𝑎|, |𝑦𝑖 − 𝑦𝑎|)

From this information, it should be possible to locate your Arup precisely. If not, either two things

have happened, there is not enough information to uniquely locate your Arup, or there is an

issue with the Arup Locating TechnologyTM and your Arup’s location is not consistent with the

information given. You should determine which is the case and print Arup’s location if possible.

(Note: Your app should also take into account that all Arups, even your Arup, will always stand

at integer coordinates and no two Arups, even your Arup, will occupy the same position.)

Input

The first line of input will be a single integer n (1 ≤ n ≤ 100), representing the number of Arups,

not including your Arup.

The next n lines contains three integers xi, yi, and d(i) (-100 ≤ xi, yi ≤ 100, 0 ≤ d(i) ≤ 100),

representing the location of Arup i and his beacon function from above.

Output

If you can find your Arup, print his location as integer coordinates xa ya. If your Arup could be at

multiple locations print “Multiple” without quotes. If a beacon Arup must be misreporting, print

“Error” without quotes.

Samples

Input Output

1

1 1 0

Error

1

1 1 1

Multiple

2

-1 -1 1

2 2 2

0 0

Problem B: Quadruple Chomp
Filename: chomp4

Time limit: 3 seconds

Nom Chomsky the chain chomp regularly sneaks bites of food from Bowser’s dinner table. All

the food on the table is arranged on a line and Chomsky is able to eat any contiguous section in

a single bite. After honing his technique he can impressively manage four bites before being

caught. Chomsky knows how tasty each dish is wishes to maximize the combined tastiness of

his four bites. However he must be careful as some dishes are so bad tasting that they have a

negative tasty value! Find the maximum tastiness Chomsky can obtain with four or less bites.

Input

The first line of input contains a single positive integer, n (n ≤ 105), representing the number of

food items on the table. The second line contains n space-separated positive integers. The ith

integer, ti (-1000 ≤ ti ≤ 1000), on this line represents the tastiness of the ith food item from the

left on the table.

Output

For each test case output the maximum sum of tastiness Nom Chomsky can enjoy within four

bites or less.

Samples

Input Output

1

-1

0

2

1 -2

1

11

1 -9 5 -1 2 -3 1 -4 3 -4 1

11

9

2 -3 2 -3 3 -1 5 -5 3

14

9

10 -5 9 -100 30 -10 9 -6 10

63

Solution for the fourth sample test case with bites bolded: 2 -3 2 -3 3 -1 5 -5 3

Solution for the fifth sample test case with bites bolded: 10 -5 9 -100 30 -10 9 -6 10

Problem C: Garlic Bread Memes
Filename: garlicbread

Time limit: 3 seconds

While browsing a meme website, you come across the following post:

"You have been visited by the Great Garlic Bread! Upvote this post and some of the comments

on this post in 3 seconds per test and luck shall rain down on you! But, you must upvote in a way that

makes garlic bread look like it has a long and increasingly positive history. The comments are indexed

from 1 to N in order of the time each comment was posted. Comment i has some garlic bread positivity

rating p(i), representing how much positive garlic bread emotions are expressed in comment i. Upvote

this post and some maximum-sized subset of the comments S (sorted by indices) such that the slope

between chosen comment Si and Si+1, defined as
𝑝(𝑆𝑖+1)−𝑝(𝑆𝑖)

𝑆𝑖+1−𝑆𝑖
, is not less than K for the luck to rain down

on you."

This post is likely just spam. In case you DO decide to upvote the post and the comments with the

restrictions listed, what is the most number of comments you can upvote?

Input
The first line of input consists of two space separated integers, n (1 ≤ n ≤ 1000), the number of comments

and k (-10
9
≤ k ≤ 10

9
), the minimum slope the subset of comments is allowed to have between adjacent

comments. Line 2 describes the function p, where the ith integer equals p(i) (-10
9
≤ p(i) ≤ 10

9
). All

integers on both lines will be separated by spaces.

Output

Output the maximum number of comments you would upvote while following the restrictions of the post.

Samples

Input Output

10 0

2 12 4 6 5 3 10 -5 8 10

5

10 -1

2 12 4 6 5 3 10 -5 8 10

7

Sample Input 1 Explanation: Upvote comments 1, 3, 4, 7, and 10. The slopes between consecutive

comments in this sequence are 1, 2, 4/3, and 0, respectively, all greater than or equal to 0.

Sample Input 2 Explanation: Upvote comments 1, 3, 4, 5, 7, 9, and 10. The slopes between consecutive

comments in this sequence are 1, 2, -1, 5/2, -1, and 2, respectively, all greater than or equal to -1.

Problem D: Universal Locker Rental 2
Filename: locker2

Time limit: 1 second

Universal Studios lets guests put their belongings in lockers while they enjoy thrill rides. As a
courtesy, the lockers are free for up to one hour. After that, guests get charged a rather large
amount of money for using a locker. Normally, you would put your belongings in a locker, enjoy
a single ride and then collect your belongings. However, the process of checking out a locker
and retrieving your items is rather laborious. Thus, it would be nice to minimize the number of
times you have to check a locker. If the ride times are low enough, you could ride maybe two or
three rides before having to retrieve your belongings and still not get charged at all.

Write a program that, given a list of the ride times (wait plus ride time) for all the rides you want
to enjoy for a day, determines the minimum number of times you will need to check out a locker
without paying any money. You may select any order to ride the rides that minimizes this
number. For the purposes of this problem, assume that it takes 7 ½ minutes to travel from a
locker to any ride and 7 ½ minutes to travel from any ride back to a locker.

Input
The first line of input contains a single positive integer, n (1 ≤ n ≤ 40), representing the number
of rides you’d like to enjoy for the day. This is followed by n lines of input, each of which has a
single positive integer, t (15 ≤ t ≤ 45), representing one of the ride times.

Output
On a single line, output the minimum number of times you will have to check out a locker to
avoid paying for the locker at all.

Samples

Input Output

5

15

20

35

30

20

3

4

15

20

25

35

3

For the first sample, the ordering (15, 30), (20, 20), (35), shows that three locker check outs
suffice.

Problem E: Message Spam
Filename: spam

Time limit: 1 second

Somehow people keep on lending their phones to Zachary. The most logical thing to do in this

situation is to go to the GroupMe CPSI 2017 unofficial chat from their phone and start

spamming messages. When they get their phone back and see how they got roasted by the

other campers, they will conclude that redemption is impossible and leave the group chat of

their own volition.

Gabriel wants to add them back to group chat, but he needs know whose phones were in

Zach’s possession. He suspects that anyone who has submitted three or more identical

messages is a victim. The messages need not necessarily be adjacent. For the purposes of this

problem, when comparing two messages, do a case sensitive comparison. Thus, "Hi" and "hi"

should NOT be treated as identical messages.

Input

The input begins with a single positive integer m (m ≤ 100) the number of messages. Following

this on each line will be a message of the form <name>: <text>. <name> will contain only

alphabetic characters while <text> can contain alphabetic characters, numbers, spaces, and the

symbols ! @ ? " , ’ . (). <name> will have no more than 20 characters while <text> will have no

more than 100. The first letter of <name> will always be uppercase. There will never be two or

more spaces in a row or trailing spaces. <name> is always followed by a colon and a space (:).

Output

On separate lines, output the names of people in the chat who submitted the same message at

least 3 times in alphabetical order by name. If there are no such people, output -1.

Samples

Input Output

11

C: hey

B: what’s up

A: the sky

B: what’s up

A: the sky

B: what’s up

A: the sky

C: hey

A: ho

A: ho

A: ho

A

B

Input

3

Miles: anyone want to kill a giant roach?? lol please

Ian: Call 911

Kurt: Evacuate the building

Output

-1

Input

22

Ethan: Hec 101 like normal? Right

Ethan: ?

Jacob: ?

Chris: Im da map

Chris: Im da map

Chris: Im da map

Chris: Im da map

Chris: Im da map

Kurt: ?

Chris: Im da map

Chris: Im da map

Chris: Im da map

Chris: Im da map

Jeffrey: wait are you da map?

Jeffrey: im not sure

Jeffrey: you haven’t made it clear enough

Allen: burn the map smh

Kian: Be proud of yourself chris

Kian: You are the map

Lina: I’m pretty sure "map" is an acronym for "most annoying person"

Dylan: Rip Chris

William: @Chris Pan might as well just leave the camp now

Output

Chris

Problem F: Superprime
Filename: superprime

Time limit: 1 second

Arup loves prime numbers. Not only that, but he loves prime numbers IN prime numbers. In a

quest to get his name in the number theory books, he’s come up with his own definition: a super

prime number.

A super prime number is one such that each “prefix” of the number is prime as well. Consider

the prime number 7393. Since each of its 4 prefixes, 7, 73, 739 and 7393 are prime, it is a super

prime number!

Arup would like to enlist your help in studying super primes so that others may find them

interesting and study them as well so that eventually he’ll make a contribution to number theory

books.

In particular, he’d like for you to write a program that takes in an integer k and returns the kth

super prime number, in numerical order.

Input

The input contains a single positive integer, k. The input will be such that it is guaranteed that

the kth super prime number exists.

Output

On a single line, output the kth super prime number, in numerical order.

Samples

Input Output

7 31

23 599

Note: The first seven super primes are 2, 3, 5, 7, 23, 29 and 31.

Problem G: Clear the Board
Filename: board

Time limit: 2 seconds

Matthew is playing a game called Clear the Board. In this game, Matthew is given an 8x8 board

with pieces on it. Matthew’s objective is to clear the board in as few moves as possible, where a

move consists of removing every piece on a single diagonal.

Input

The first line of input is a single integer, n (1 ≤ n ≤ 64), that denotes how many pieces are on the

board. The next n lines consist of two integers, x and y (1 ≤ x, y ≤ 8), that describe the x and y

coordinates of that piece on the board.

Output

On a line by itself, output the minimum number of moves required for Matthew to clear the

board.

Samples

Input Output

3

1 1

3 3

3 5

2

Input Output

4

2 2

4 4

2 5

5 2

2

Explanation of Sample Input 1:

Matthew uses one move to clear the pieces at (1, 1) and (3, 3). He uses another a move to clear

the piece at (3, 5).

Explanation of Sample Input 1:

Matthew uses one move to clear the pieces at (2, 2) and (4, 4). He uses another a move to clear

the pieces at (2, 5) and (5, 2).

Problem H: River Delta Tour
Filename:​ ​river

Time limit:​ ​3 seconds

In Libraland river deltas resemble complete binary trees. In other words, each delta will have
2​n​-1 intersections and 2​n​-2 joining streams for some positive integer n. However, there actually
are no oceans or lakes for the deltas to drain into. Instead, river deltas just flow into some other
river delta that branches the same number of times. A delta with 2​n​-1 intersections will share 2​n​-1
of them with the other delta. These deltas are famous for their beauty and tours of them are
quite popular, but some streams are more beautiful than others. Furthermore, no one wants to
visit the same stream more than once in tour (but visiting the same intersection is fine). With this
in mind, LibraTours LLC wants to know the maximum beauty possible for a tour starting from the
entrance of a river’s delta.

Input
Each test case starts with line containing a single integer ​n ​(2 ​n 15). Proceeding this will be ≤ ≤
2​n ​-2 ​lines which describe the beauty values ​b​i ​(1 ​b​i 500) of all the streams. The first ​n​-1 ≤ ≤
lines describe the first river delta. Each line corresponds to a depth in the binary tree
representation of the river delta. The first line of the description will have 2 beauty values, the
beauty values of the streams directly splitting off from the river entrance. The number of beauty
values per line doubles until the line containing 2​n​-1 values. The next ​n​-1 lines describe the
second river delta in a similar fashion, but upside down (refer to diagrams of samples).

Output
Output a single integer, the maximum beauty tour possible starting from the entrance of the first
river delta that does not revisit any streams.

Samples

Input Output

3
1 6
1 1 7 5
1 2 6 5
2 1

30

4
1 30
1 1 30 1
4 5 5 4 30 30 1 2
6 4 4 4 30 30 4 3
1 2 3 1
2 2

180

2
1 1
1 1

4

Diagram for sample 1: Diagram for sample 2:

Problem I: Magnetic Strip
Filename: strip

Time limit: 5 seconds

While playing with the magnetic strips that came with his mini whiteboard, Gabe realized that

the strips were made from several equal length bands of positive or negative magnets with no

particular order. The strips are only magnetic on one side and Gabe enjoys folding them and

trying to hold them together by matching positive bands with negative bands. In order to make

the strongest bond he would like to know the largest contiguous section on a strip that can be

perfectly paired with another section on the same strip. Folding can be done both in between

bands and on the center of a band.

Input

Each test case consists of a single string of ‘+’ and ‘-’ characters denoting positive and negative

bands on the magnetic strip. The length of this string is at least 1 and no more than 105.

Output

On a line by itself, output the maximum length section that can be paired with another section

on the same strip.

Samples

Input Output

++ 0

++-+-+- 3

+--+++-----+++---+++ 8

-+--+ 2

Solution for third sample test case:

+--+++-----+++---+++

+--+++-----+++---+++

+--+++---

-

+--+++---

-
-+++---+++

