
Problem A: Bunny Farm
Filename: bunny

Time limit: 2 seconds

Farmer Eric runs a bunny farm where he has n bunny dens in a row. He wants to do an

analysis on the population growth of bunnies. When two groups of bunnies merge, he knows

that the population of the resulting den is the product of the two groups. However, he is not very

good at arithmetic with large numbers.

Farmer Eric can perform a single operation and would like to be able to perform a single query

periodically. The action is merging a new den with an existing den, increasing the total

population size of that den (to their product). The type of query he’d like to perform is as follows:

given two groups if he merged group 1 into one den, and group 2 into another den, which group

would have the larger population? A group is defined by two integers, l and r, the start and end

index, inclusive, of the group from the n dens.

Input

The first line of input will contain two space separated integers, n (1 ≤ n ≤ 105), and q (1≤q≤105)

representing the size of the farm and the number of actions Farmer Eric will take. The next line

contains n integers, ai (1 ≤ ai ≤ 1018, ai is guaranteed to be a power of 2), representing the

population of each bunny den. The following q lines will each contain information about one

action. The ith of these lines will contain t (1 ≤ t ≤ 2), the action type.

For action type 1, there will be two space separated integers, j (1 ≤ j ≤ n), and x (1 ≤ x ≤ 1018, x

is guaranteed to be a power of 2), the index of the bunny den and the population size of the new
den being merged into the jth bunny den.

For action type 2, there will be four space separated integers, l1, r1, l2, r2 (1 ≤ l1, r1, l2, r2 ≤ n) the

start and end indices of group 1 and group 2. It is guaranteed that l1 ≤ r1 and l2 ≤ r2 .

Output

For each action of type 2, print 1 if group 1 has the larger population product, -1 if group 2 has
the larger population product, or 0 if they are equal.

Samples

Input Output

5 5

1 2 4 8 16

2 5 5 4 4

1 4 2

2 5 5 4 4

1 4 2

1

0

-1

2 5 5 4 4

Problem B: Favorite Divisors
Filename: divisors

Time Limit: 1 second

Farmer John has two favorite numbers, N and K. He also considers a number X one of his

favorite divisors if X is a divisor of N and X has exactly K divisors (including 1 and X). Bessie

would like to impress Farmer John by figuring out how many favorite divisors he has. Can you

help her?

Input

The first line of input contains two space separated positive integers: L (1 ≤ L ≤ 200), and K

(1≤K≤1018). The second input line will contain L space separated positive integers less than 109.

N (1 ≤ N ≤ 1042) is equal to the product of all integers on the second line.

Output

Print out the number of favorite divisors Farmer John has.

Samples

Input Output

3 4

5 2 3

3

Sample Explanations:

K is equal to 4 and N is equal to the product of 2, 3, and 5. There are 3 divisors of 30 that have

exactly 4 divisors: 6, 10, and 15.

Problem C: Finicky Anya
Filename: finicky

Timelimit: 2 seconds

When Arup is taking care of Anya, he is a softie and he doesn't want her to fuss or cry. So, to
prevent her from crying, he will buy her something, typically a stuffed animal. As one might
imagine, this gets expensive after a while. Arup would like your help in minimizing how much he
spends while making sure Anya doesn't fuss.

For the purposes of this problem, assume that Arup and Anya are walking along a number line
in the positive direction, starting at 0, ending at some fixed point e, and that initially Anya has
some happiness score. Each minute, Anya's happiness score decreases by 1 and the two of
them walk 1 unit. At various locations along the number line, there will be an opportunity for
Arup to buy Anya an item. Each item has a cost and amount of increase in happiness it will
bring Anya. If Anya's happiness ever goes down to 0, she will fuss. Note that if her happiness
goes down to 0 and immediately Arup buys her an item at that instant, Arup (and Anya) will be
okay.

Given Anya's initial happiness, the length of their walk, a list of locations along the number line
with opportunities to buy items, the cost of those items AND the amount of added happiness
those items will bring to Anya, determine the minimum amount Arup can spend to make sure
that Anya doesn't get fussy for one or more minutes.

Input

The first line of input will contain three space separated integers, h (1 ≤ h ≤ 100), e (2≤e≤1000),

and n (1 ≤ n ≤ 100) representing Anya's initial happiness, the ending coordinate on the number

line for the walk, and the number of locations at which items are available for purchase,

respectively. The following n lines will each contain information about one item for purchase.

The ith of these lines will contain three space separated integers, xi (0 < xi < e), ci (1≤ci≤10000),

and ai (1 ≤ ai ≤ 1000), representing the x-coordinate the item is available for purchase (a

positive integer), the cost of the item in cents, and the added happiness the item brings Anya at

that point in time (a positive integer). The xi's are such that 0 < x1 < x2 < x3 < ... < xn < e.

Output

On single line, output the minimum Arup can spend in cents while making sure Anya does not
cry for even one minute during their walk. If it's impossible to prevent Anya from crying, output -
1.

Samples

Input Output

15 11 1

3 99 5

0

5 20 1

7 1000 100

-1

5 20 3

2 559 4

4 899 20

9 339 11

898

Problem D: Cow Grouping
Filename: grouping

Time limit: 5 seconds

All of Farmer John’s cows are standing in a tremendously long line! Gazing off into the endless

horizon of bovine beauty, an idea comes to FJ: all of the cows should get together for some

group activities! But before the activities can begin, Farmer John must split his cows into

groups.

To do this, FJ stands at the front of the line of cows. He begins by adding the first cow in the line

to an empty group. There are many different breeds of cow, and Farmer John knows that the

groups will get along well if they each have a strong and united leadership, so he continues to

add cows to the group until there are K cows of a single breed within the group. (Note: at the

point in time that an added cow is the Kth cow of her breed, the group is immediately finalized.

This means that the group must have fewer than K cows of all other breeds.) Once a group is

made, he sends them off to do some activities and then continues taking cows from the front of

the line, building more and more groups.

Farmer John is quite certain that he wants K cows of a single breed within every group, so if he

gets to the end of the line and the very last cow isn’t the Kth cow of some breed in the current

group, he won’t be satisfied. However, he’s not sure what value of K to use, or how many

groups some K might result in.

Find all values of K that are satisfactory to Farmer John, as well as the number of groups each

value of K splits the cows into.

Input

Each test case will begin with a single line containing two integers N (1 ≤ N ≤ 3 x 105), and

M(1≤M≤100), indicating the number of cows and the number of cow breeds, respectively. The

next line will contain N space separated integers ai (1 ≤ ai ≤ M). If ai = j, then the ith cow is of

breed type j.

Output

On the first line print an integer P: the number of satisfactory options for K.

Then print P lines, each containing two integers ki and gi, indicating that if Farmer John breaks

groups off when there are ki cows of a single breed in the group, then exactly gi groups will be

formed. Print these lines in order of ki, from smallest to largest.

Samples

Input Output

5 2

1 2 2 1 1

3

1 5

2 2

3 1

7 3

1 2 3 1 2 3 2

3

1 7

2 2

3 1

Sample Explanation

In the first sample, this is what the groups would look like for each valid K:

1: [1] [2] [2] [1] [1]

2: [1, 2, 2] [1, 1]

3: [1, 2, 2, 1, 1]

Problem E: Anya and Ice Cream
Filename: icecream

Time limit: 3 seconds

Anya is quite smart. Recently, she graduated as valedictorian from Berland High. Her parents

were very proud, so they gave her a special gift.

Because Anya hates cycles and non-connectedness, and loves ice cream, her parents gave her

a tree rooted at node 1. Each node in the tree has an ice cream tub with capacity ki gallons. On

the i’th day of summer, Anya wants to pick some tub of ice cream from the i’th subtree of the

rooted tree such that the tub has at least K gallon capacity. If possible, she will eat all of the ice

cream from that tub, responsibly wait twenty minutes, and then jog to the grocery store (to work

off that ice cream) and buy enough ice cream to refill the tub she picked that day. However,

Anya will be sad if on the ith day, the ith subtree in her spectacular ice cream tree has no such

tub of at least K gallons. In fact, if Anya is sad just one day, her entire summer is a waste.

Help determine if Anya will have a good summer by

answering Q queries.

Subtrees are numbered by traversing the tree from the

top (also known as the preorder traversal). The root of

the tree is the root of the 1st subtree. Refer to the image

on the right for an example. If two or more nodes have

the same parent, the earlier subtree is the one rooted at

the node with the smaller index i as indicated in the

input.

Input

For each test case:

● The first line contains two integers, 1 ≤ N,Q ≤ 105 the number of nodes in Anya’s ice

cream tree and how many queries will follow, respectively. The following line contains N

integers, the ith of which is the capacity 1 ≤ ki ≤ 109 of the ith (1 ≤ i ≤ N) ice cream tub.

Next is a line containing N - 1 integers. The ith (1 ≤ i ≤ N-1) of these integers is pi+1, the

parent of node i+1.

● The following Q lines contain Q queries, one per line. Each query consists of two space

separated integers i (1 ≤ i ≤ N) and K (1 ≤ K ≤ 109), the day of summer, and the

minimum capacity tub Anya wants that day, respectively.

Output

For each query, output “YES” if Anya can get what she wants or output “NO”, otherwise.

Samples

Input Output

3 3

1 10 1

1 1

1 10

2 10

3 10

YES

YES

NO

5 2

1 2 3 4 5

1 2 3 4

5 2

2 5

YES

YES

Sample Explanation

For the first sample, in the third query, Anya cannot find a bucket of capacity not less than 10 in

the third subtree (consisting of only the third node).

In the second sample, Anya can find a value not less than 2 in the fifth subtree (which is just

node 5). For the second query, she can find a single bucket with capacity at least 5 in the

second subtree (which is rooted at 2).

Problem F: Number of Depth First Searches
Filename: numdfs

Timelimit: 2 seconds

On the back of your Summer Institute T-shirt is a picture of a depth first search, with each vertex

labeled in the order that it was visited on a depth first search from the top left vertex that forms

the ‘S’ on the shirt. This got you to thinking, how many different orderings of the vertices,

starting from that top left vertex form valid depth first searches on a graph. Write a program to

satisfy your query!

Input

The first line of input contains three space separated positive integers: n (1 ≤ n ≤ 10), m(n-

1≤m≤n(n-1)/2), and v (1 ≤ v ≤ n), representing the number of vertices in the graph, the number

of edges in the graph, and the starting vertex for the depth first search, respectively.

The following m lines of input each contain a pair of integers. The ith (1 ≤ i ≤ m) of these lines

contains integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi), indicating that vertices ui and vi are

connected by an edge in the graph. It is guaranteed that each edge listed will be unique and

that the graph itself is connected.

Output

On a single line by itself, output the number of valid depth first searches of the input graph that

start at vertex v.

Samples

Input Output

3 3 2

1 2

1 3

3 2

2

5 4 3

1 2

5 1

3 5

4 5

2

Problem G: Paper Route
Filename: paper

Time limit: 3 seconds

A newspaper company has opened up shop in town. The town consists of N numbered

locations and M roads connecting these locations. There are K newspaper distribution centers

occupying the locations numbered 1 through K. The rest of the locations are houses, to which

newspapers must be delivered.

Each distribution center i has an infinite number of couriers which cost ci to move across a

single road. The couriers can only deliver a single paper each; the cost of their trip is ci times

the number of roads between the distribution center and their destination. The couriers always

take the shortest path from the distribution center to their destination.

Every house must get a newspaper. Assuming you assign couriers from your distribution

centers optimally, what is the minimum total cost to get a newspaper to everybody?

Input

Each test case will begin with a single line containing three integers N, M, and K. (1 ≤ N ≤ 103,

N - 1 ≤ M ≤ 106, 1 ≤ K ≤ min(N, 100)), indicating the number of nodes, the number of edges,

and the number of distribution centers. The next line contains K integers c1, c2, …, cK, indicating

the costs of the couriers (1 ≤ ci ≤ 100) for each distribution center i. The next M lines contain

two integers ui and vi, indicating an edge between those two nodes.

Output

Print a single line containing the minimum total cost to deliver a newspaper to every house.

Samples

Input Output

13 20 3

65 24 20

2 5

5 13

13 8

8 3

3 11

11 9

9 1

1 12

12 7

7 6

6 2

13 11

13 4

4 9

13 10

5 10

6 10

7 10

1 10

7 4

389

Problem H: Rambling Teaching Assistants
Filename: rambling

Time limit: 1 second

After a day of watching online videos for SI@UCF Competitive Programming Camp, you noticed
that some teaching assistants rambled a lot, and some rambled less. You realized that if you
could watch the lectures faster, you could spend more time programming!

Given the the total duration of each teaching assistant’s video lecture for a week, and each
teaching assistant’s ramble rate, calculate how much extra time you could spend programming
if you watched the videos at speeds based off of each teaching assistant’s ramble rate. For
example, if a teaching assistant has a ramble rate of 1.0 and his lecture is 45 minutes long, the
time you need to spend watching the lecture is 45 minutes; if the ramble rate is 2.0, then you
can finish watching the lecture in 22.5 minutes. If the ramble rate is such that adjusting the video
accordingly makes you spend more time watching, you must still watch the lecture at that new
speed because your mother paid lots of money for this camp!!!

Input

The first line of input contains a single positive integer, N (1 ≤ N ≤ 20), denoting how many

lectures to watch. The following N lines contain information about each lecture, one per line.
The first item on each of these lines is the name of the teaching assistant giving the lecture, the

second item on each of these lines is a positive real number, r (r ≤ 100), the ramble rate of the

teaching assistant giving the lecture, and the third item on each of these lines is a positive

integer, d (d ≤ 300), representing the length of the same lecture, in minutes. Each name is at

most 20 letters long and each ramble rate will be given to at most two decimal places.

Output

Output a single real number rounded to two decimal places: the amount of extra time, in
minutes, saved for programming if you watch the videos according to the given ramble rates,
instead of at regular speed. If time is lost, please print out the corresponding negative number.

Samples

Input Output

3

Guha 1 60

Bailey 2 60

Magnuson 0.9 75

21.67

1

Compton 0.5 60

-60.00

Problem I: Retrospective Rating
Filename: rating

Time Limit: 3 seconds

Recently, Charles was looking at his Codeforces rating chart. He thought to himself, “what if I
could have skipped up to k contests? How much higher could my rating be?”

Given a list of Charles’ rating deltas (changes), output how much higher Charles’ final rating
could be if he had skipped up to k contests.

Input

The first line of input contains an integer, n (1 ≤ n ≤ 5*105), representing the number of rating

changes to process, and an integer, k (0 ≤ k ≤ n), representing the maximum number of rating

changes to ignore. The next line contains n integers all between -335 and 335, inclusive,
representing each of the rating changes between contests.

Output

On a line by itself, output a single integer representing how much higher Charles’ rating could
be if he could ignore up to k of his contest performances.

Samples

Input Output

5 1

-5 10 20 30 40

5

5 0

-5 10 20 30 40

0

4 3

10 20 -2 -4

6

Sample Explanations

In the first sample, Charles can ignore one delta, so he ignores the first one. In the second
sample, Charles cannot ignore any of the deltas. In the third sample, if Charles ignores a third
delta, he score will go down, thus, his optimal choice is just to ignore the -2 and -4, even though
he could have ignored a third.

Problem J: Spiraling Ant
Filename: spiral

Timelimit: 1 second

Sammy the Ant lives on the Coordinate plane and loves to walk in spirals. On any given day, he

simply chooses a positive integer x, and then proceeds to start his walk from the origin. In

particular, he will walk x units in the positive x-axis, then make a right turn and walk x+1 units,

then he’ll make another right turn and walk x+2 units, and so forth. After each walking segment,

he always turns right and then travels in the new direction for one more unit than his previous

walking segment.

(The diagram above shows Sammy’s first few steps for when he chooses x = 3.)

Sammy is the keeper of the salami and you really love salami!!! Unfortunately, in order to get

the salami, you have to find him. All you know is the value of x he chose for the day as well as

how many straight line segments he walked for the day. Write a program to determine where

Sammy is!

Input

The input consists of two positive integers, separated by a space: x (x ≤ 100), and n (n ≤ 105),

representing the number of units of Sammy’s first walking segment and the number of segments

Sammy is walking for the day, respectively.

Output

On a single line by itself, output Sammy’s x and y coordinate locations, respectively, separated

by a space.

Samples

Input Output

3 4 -2 2

11 101 61 50

