
Problem A: Ducks in a Row

Filename: ducks
Time limit: 3 seconds

Sri is playing a game with ducks, geese, and a magic wand. First he puts all his ducks in a row.
Next his friend Srinivas inserts some geese between the ducks at different places. Sri can then
use his magic wand to flip some of the ducks and geese.

Each use of his wand can be defined formally:

1) Sri can select some contiguous sequence of ducks and geese.
2) All birds that were ducks before using the wand are now geese.
3) All birds that were geese before using the wand are now ducks.

Sri has an objective to succeed at the game. He must turn the row into at least k maximal runs
of consecutive ducks of length at least n. A maximal run is a sequence of ducks that does not
have a duck immediately to its left or right. For example, the following row of birds has 4
maximal runs of ducks of lengths 2, 3, 3, and 1, respectively:

D D G G G G D D D G D D D G D

Sri needs to find the minimum number of wand uses to meet his objective. There can be other
maximal runs of consecutive ducks at the end of the game, maybe some of length <n, but there
must be at least k of at least length n.

Input

The first line of input will contain two integers n and k (1 ≤ n, k ≤ 2,000), where n is the
minimum length of each sequence of ducks that Sri desires, and k is the minimum number of
sequences of ducks that Sri desires.

The second line will contain a single string, s (1 ≤ |s| ≤ 2,000), consisting of only the capital
letters D and G. They represent the row of birds before Sri starts using his magic wand, where D
is a duck and G is a goose.

Output

On a line by itself, output a single integer, the minimum number of times he must use his wand
to meet his desired property or -1 if it is not possible.

Samples

Input Output

2 2

DDDGD

1

2 3

GGDGGDGG

1

Problem B: Hardest Problem

Filename: hardest
Time limit: 1 second

Arup was worried somebody might solve the set for Contest 3, so he asked Spencer to make an
extremely hard problem. Spencer made the problem, but when Jacob tried test-solving it, he
was stumped. Spencer wondered, is this problem too hard for an SI contest? Probably, but it
was too late to think of another problem.

Can you solve the problem Jacob couldn’t? The problem is as follows:

Given an array A of length N we want to partition it into one or more contiguous groups. Once
partitioned, we will take the XOR of the elements in each group. Finally, we will obtain the sum
of these groups’ XOR values. Bessie wants to partition the array such that this sum is minimal.
Farmer John wants to partition the array such that this sum is maximal. What is the difference
between their sums?

Input

The first line of input contains one positive integer: N (1 ≤ N ≤ 105). The second input line will
contain N space separated positive integers less than 109, these are the elements of A (in
order).

Output

Print out the difference between the sums Bessie and Farmer John calculate.

Samples

Input Output

4

3 9 2 4

6

5

1 2 4 8 16

0

Problem C: Mad Mathematician

Filename: madmath
Time limit: 2 seconds

Fatt Montaine, after a disgruntled childhood, has dedicated his life to finding interesting
numbers. Currently he is working with properties of numbers surrounding the sum of the divisors
of a number such as perfect, abundant, and weird numbers. For example the divisors of 12 are
1,2,3,4,6, and 12 so the sum of the divisors of 12 is 28. Today he has discovered an amazing
number, but he forgot what it was. Thankfully he still has a way of getting the number back as
he still has sum of the divisors of the number, which he denotes “S”. Fatt has been producing
numbers by multiplying a set of smaller numbers together. However even if Fatt takes product of
the set he wouldn’t be able to tell if it was the amazing number just by looking at it. He would
need to recompute the sum of divisors of the product and compare it to S. However, computing
the sum of divisors of the products of all these sets took him years! Being the sly fox that he is,
Fatt knows that he can identify the correct set from obtaining just the remainder of the sum of
the divisors of the product of the set when divided by 109 + 7, Fatt’s favorite prime number.

Input

The first line of the input contains a single positive integer n (1≤ n ≤ 400), the number of integers
in the set. The second line of input contains n integers a0 - an-1 (1 ≤ ai ≤ 500,000). The product of
these numbers may not necessarily fit into a 64-bit integer.

Output

Let the product of all ai be denoted as P. Output sum of the divisors of P modulo 109 + 7.

Samples

Input Output

3

2 2 3

28

6

1000 2000 3000 4000 5000 6000

822202011

Problem D: As Easy As C-A-B

Filename: cab
Time limit: 1 second

We all know how to alphabetize a list when you know the order of the alphabet. But can you find
the order of the alphabet from an ordered list of words?

Consider the ordered list [cab, cda, ccc, badca]. It is clear that 'c' comes before 'b' in the
underlying alphabet because 'cab' comes before 'badca'. Similarly, we know 'a' comes before
'd', because 'cab' < 'cda', 'a' comes before 'c' because 'cab' < 'ccc', and 'd' comes before 'c'
because 'cda' < 'ccc'. The only ordering of these four letters that is possible is adcb.

Of course, it may not work out so well. If the word list is [abc, bca, cab, abc] there is no alphabet
that works. The list is inconsistent. If the word list is [dea, cfb] we don't know about the relative
positions of any of the letters other than ‘c’ and ‘d’. The list is incomplete. Every list will fall into
exactly one of the following three categories:

1. The list is correct if a single alphabet will yield the ordering
2. The list is incomplete if more than one alphabet will yield the ordering
3. The list is inconsistent if no alphabet will yield the ordering

Given a list of words, determine if the list is correct, incomplete or inconsistent, and if it is
correct, give the single underlying ordered alphabet.

Input

The first line of input contains a lowercase letter last, and an integer n (1 ≤ n ≤ 100). Each of the
following n lines will have a string s (1 ≤ |s| ≤ 50) consisting only of lowercase letters ‘a’-last.

Output

If the list is correct, and it is possible to uniquely determine the ordering of the letters ‘a’-last,
output that ordering as a single string. If the list is incomplete, and there’s not enough
information to determine the positions of all the letters, output 0 (zero). If the list is inconsistent
in any way then output 1.

Samples

Input Output

d 4

cab

cda

ccc

badca

adcb

c 4

abc

bca

cab

abc

1

f 2

dea

cfb

0

b 3

a

bb

b

1

Sample Explanation:

The first three cases are described in the problem description and the last case is inconsistent
because there is no alphabet for which bb comes before b.

Problem E: Charles is Always Late!

Filename: charles
Time limit: 1 second

If there is one thing that everyone on Programming Team knows, it’s that Charles is always late.
Maybe he’s on Miami time, but nobody knows for sure. Whatever the case, he’s late to class,
practice, and important TA meetings.

It turns out that depending on the path Charles chooses to take from his dorm to the
Programming Team Lab, he might get sidetracked along the way by certain things, especially
on Tuesday and Thursday afternoons in Spring semester, which is when the unofficial dog club
meets on Memory Mall.

The UCF campus can be described as an undirected graph. Walkways are edges and junctions
connecting sidewalks are nodes. For a normal person, each edge takes a certain amount of
time to walk from one side to the other. But Charles might walk along that edge faster or slower.

Given the graph describing UCF’s campus, output how much longer than normal it takes
Charles to get from his dorm (at node 1) to the PTL (at node n).

Input

The first line contains two integers, n (1 ≤ n ≤ 2000) and m (1 ≤ m ≤), the number in((), 10)m 2

n 5
of junctions and walkways, respectively. Each of the next m lines contain three integers
representing a walkway: u (1 ≤ u ≤ n), v(1 ≤ v ≤ n, u ≠ v) and t (1 ≤ t ≤ 105), representing that
intersections u and v are connected by a walkway that takes t minutes to traverse from one side
to the other. Next is a line containing m integers, the ith of which is ci. Charles takes ti + ci
minutes to walk the ith edge. It is guaranteed that no edge i exists such that ti ≤ 0 or ti + ci ≤ 0.

Output

Output how much longer (or shorter) than normal it takes Charles to get to the PTL from his
dorm. For example, if Charles is late, output a positive number representing how many minutes
longer it takes him to get to the PTL. If he’s early (unlikely), output a negative number
representing how many fewer minutes it takes Charles to get to the PTL; if he’s on time, print
zero.

Samples

Input Output

3 3

1 2 10

2 3 10

1 3 10

-5 0 15

5

3 3

1 2 10

2 3 10

1 3 10

5 0 0

0

2

Problem F: Fire Sale

Filename: firesale
Time limit: 2 seconds

There is a fire sale going on at Anya’s favorite toy store. As Arup wants to make Anya happy,
he gives her a maximum allowance of k dollars. It is Anya’s goal to buy as many toys as
possible without spending more than k dollars.

However, the fire sale has certain rules. All of the toys are lined up in a row, and Anya can only
buy toys that are in one contiguous sequence. Additionally, the cost of the sequence of toys is
the cost of the most expensive toy minus the cost of the least expensive toy.

Input

The first line of input will contain two space separated integers, n (1 ≤ n ≤ 106), k (1 ≤ k ≤ 106),
representing the number of toys in the store and the maximum amount of money Arup is willing
to spend, respectively. The following line contains n space separated integers, ai (1 ≤ ai ≤ 106),
the costs of each toy.

Output

On a single line, output the most toys Anya can buy without going over her allowance.

Samples

Input Output

5 1

5 5 5 5 5

5

5 2

2 1 3 4 5

3

6 4

1 1 6 9 8 10

4

