
Problem A: Easiest Problem

Filename: easiest
Time limit: 3 seconds

Arup was worried nobody would solve a problem during Contest 4, so he asked Spencer to
make an extremely easy problem. Spencer made the problem, but when Jacob tried test-solving
it, he was able to solve it in a couple of seconds. Spencer wondered, is this problem too easy
for an SI contest? Probably, but it was too late to think of another problem.

Can you solve the problem Jacob could? The problem is as follows:

Farmer John has N cows currently in N different barns connected by N-1 trails. It is guaranteed
there exists exactly one path from every barn to every other barn using one or more of these
trails. Each cow is one of two breeds: Guernsey or Holstein. Guernseys do not like Holsteins,
and vice versa. Two cows will be friends if they are the same breed, are at most distance K
apart, and the path between them contains no cows of the opposite breed. The distance
between two friends is the number of trails on the path between them. Help Farmer John
calculate the number of valid pairs of friends.

Input

The first line of input contains two positive integers: N (1 ≤ N ≤ 105) and K (1 ≤ K ≤ 105). The
second input line will contain N space separated characters (either H or G) representing the
breeds of cows, in order. The ith line of the following N-1 lines each contain two distinct integers,
Ai and Bi (1 ≤ Ai, Bi ≤ N, Ai ≠ Bi), indicating that barns Ai and Bi

 are connected by a trail.

Output

Print out the number of valid pairs of friends.

Samples

Input Output

7 1

G H H H G G H

1 3

5 6

2 7

2 3

4 3

5 3

4

6 2

G H G G G G

1 2

1 3

1 4

1 5

1 6

10

Problem B: Farmer John’s Forest

Filename: forest
Time limit: 1 second

Farmer John recently got an opportunity to acquire a forest next to his many pastures. Naturally,
some of his cows venture from the pastures to the forest, out of curiosity. Unfortunately, the
forest isn’t a friendly place for a cow. Many creatures, such as snakes, lurk and can cause harm
to Farmer John’s cows. To prevent the cows from getting into the forest, Farmer John has
decided to build a fence.

He would like to build a single fence of minimum length that encloses all of the trees in the
forest. For the purposes of this problem, each tree in the forest can be treated as a point on the
Cartesian plane, but there must be at least a c foot distance from any tree to the fence, so that
the fence does not interfere with the growth of the roots of the tree. Here is an illustration of a
fence with a minimum clearance for each of the four trees. The position of each tree is labeled
with the letter ‘T’:

Write a program to help calculate the minimum length of fence that is necessary for Farmer
John, as well as the area that will be enclosed by that fence.

Input

The first line of input will contain a two positive integers: n (n ≤ 50,000), and c (c ≤ 1000),
representing the number of trees in Farmer John’s Forest that need to be enclosed and the
minimum distance of any tree to the fence, respectively. n lines of input follow. The ith of these
contain two space separated integers, xi and yi (-104 ≤ xi, yi ≤ 104), the Cartesian coordinates of
the ith tree.

Output

On a single line, output the minimum length of Farmer John’s Fence, as well as the area it
encloses. Output both values to precisely two decimal places and separate the output on the
line with a single space.

Samples

Input Output

5 1

0 0

10 0

0 10

5 5

10 10

46.28 143.14

6 4

10 41

31 20

50 20

30 41

40 30

21 20

126.84 971.59

Problem C: MASSIVE LEGEND HERE

Filename: legend
Time limit: 6 seconds

Max is opening Pokémon cards for his YouTube channel! For this video, he purchased (in
tremendous bulk) a number of Pokémon card booster packs. The booster packs are part of a
set of several collectible promotional cards, each with a varying degree of rarity. Max knows
how many cards are in the set as well as the individual rarity of each card.

Like any Pokémon master, Max wants to Catch ‘Em All™! He doesn’t want to disappoint his
subscribers, so he requires a particular degree of certainty that he will open every single
different card among all of the individual booster packs. Each booster pack contains a single
card.

Given the individual rarities of each card and the level of certainty Max wishes for in his pack
opening, find the minimum number of booster packs Max should open such that he can expect
(with his requested certainty) that he will find every individual card.

Input

Each test case will begin with a single line containing an integer N (1 ≤ N ≤ 20) and a decimal
C (0 < C ≤ 0.99), the number of distinct cards in the promotional set and Max’s requested level
of certainty. Each of the following N lines will contain two integers pi and qi (1 ≤ pi ≤ qi ≤ 105),

indicating that the ith card type occurs pi times in every qi packs. It is guaranteed that .∑
N

i=1
qi

pi = 1

Output

Print the minimum integer P such that, if Max purchases P booster packs, he has a probability
of at least C of acquiring each individual card.

Samples

Input Output

3 0.3333

1 2

1 3

1 6

4

5 0.895

1 8

1 8

1 8

3 8

1 4

25

Problem D: Productive Pastures

Filename: pastures
Time limit: 6 seconds

Farmer John has N pastures on his farm. Ever the penny-pincher, FJ only constructed N - 1
paths between these pastures, taking care to ensure that he could get from any pasture to any
other pasture using these paths. Each of these paths generates some amount of productivity by
allowing cows to travel between the pastures they connect.

The one place that FJ didn’t skimp was security - he installed retinal scanners at the main
entrance for each pasture. However, in a twisted turn of events, all of the retinal scanners have
gone down at once! (FJ was too cheap for regular maintenance). Luckily, he’s got K technicians
available to go fix the scanners.

Each technician can only fix one scanner today, and FJ wants to get his farm’s productivity as
high as possible as soon as he can. If he assigns the technicians to the appropriate pastures to
repair the scanners, how much productivity can he restore? A path will only be productive if the
pastures on both ends of it have been visited by a technician.

Input

The first line of input contains two positive integers N (N ≤ 104),and K (K ≤ 100), indicating the
number of pastures and the number of technicians respectively. The following N - 1 lines will
each contain three integers ui, vi,(1 ≤ ui, vi ≤ N, ui ≠ vi) and pi (1 ≤ pi ≤ 106), indicating that
distinct pastures ui and vi are connected by a path which generates productivity pi .

Output

Print a single integer, the maximum amount of productivity FJ can restore.

Samples

Input Output

6 3

5 3 3

2 4 5

1 3 2

4 6 3

3 4 4

9

5 4

1 4 6

3 2 1

5 2 6

3 4 1

12

Problem E: Fire Sale 2

Filename: firesale2
Time limit: 2 seconds

There is a fire sale going on at Anya’s favorite toy store again! As Arup wants to make Anya
happy, he gives her a maximum allowance of k dollars. It is Anya’s goal to buy as many toys as
possible without spending more than k dollars.

However, the fire sale has certain rules. All of the toys are lined up in a row, and Anya can only
buy toys that are in one contiguous sequence. The store owner is mad because how much
money he lost last time Anya came into his store. Now, the cost of the sequence of toys is the
average of all the toys in the subarray.

Input

The first line of input will contain two space separated integers, n (1 ≤ n ≤ 106), k (1 ≤ k ≤ 106)
representing the number of toys in the store and the maximum amount of money Arup is willing
to spend. On the following line is n space separated integers, ai (1 ≤ ai ≤ 106), the costs of each
toy.

Output

On a single line, output the most toys Anya can buy without going over her allowance.

Samples

Input Output

5 1

5 5 5 5 5

0

5 2

2 1 3 4 5

3

6 4

1 1 6 9 8 10

3

Problem F: Dank Memes

Filename: memes
Time limit: 3 seconds

As you well know, one big problem in the land of dank memes is stolen memes. However, to
impress your normie friends you’ve decided that you’re going to start stealing dank memes to
send to them. Because you’re quite the meme lord, you have a vast selection of memes to pick
from. In order to keep up your facade of being original, you want to minimize the chance of
getting caught with stolen memes.

The ith meme in your meme library has two associated values: ri, how recognizable the meme is,
and di, how dank the meme is. To gain the most meme clout with your pals, you want to choose
dank memes such that their total dankness is maximal. You also want to pick a set of stolen
memes with total recognizability no larger than R. The total recognizability of a set of memes is
simply the sum of the recognizability scores of each of those memes.

Given R, a set of n stolen memes, each with their respective ri and di values, determine the
largest total dankness of memes you can share with your normie friends. Remember, you can’t
use the same meme twice, because then you’re just another normie.

Input

The first line of input contains two integers n and R (1 ≤ n, R ≤ 4,000). Line i of the next n lines
describes the ith stolen meme with two integers ri and di (1 ≤ ri ≤ 3,000; 0 ≤ di ≤ 109), denoting
the recognizability and dankness respectively.

Output

Print out a single integer D, the largest total dankness you can achieve by sharing some set of
stolen memes with your friends without surpassing R in recognizability.

Samples

Input Output

5 20

1 2

2 1

3 4

4 3

5 5

15

3 20

20 1000

19 999

1 1

1000

Problem G: Ballerina Rage

Filename: rage
Time limit: 3 seconds

The International Ballerina Monarchy has decreed that all of its citizens must stand on a grid
and occupy a variety of locations! The Monarchy can instruct its citizens to move left and right
using a variety of C instructions cards the cardinals prepared earlier. The ith number on each
card serves as an instruction for the ith citizen in line on the grid to move a certain distance.
Look below for an example instruction card and the effect it has if each citizen begins at location

0.
There are N citizens, and N infinitely long horizontal rows for them to stand on. Each of the
citizens start at location 0 in their respective row. The Monarchy has L positions they would like
the citizens to move into, and they would like to know whether or not they can use the
instruction cards to get them there.

Note that all of the cards can be used entirely forward or entirely reverse. For example, if N = 3,
and the citizens are currently at (1, 1, 1), an instruction set of (1, -2, 4) could be used to bring
the citizens to either (2, -1, 5) or (0, 3, -3). Furthermore, any fraction of the card’s values can be
used as well. An instruction set of (3, 5, 7) could be scaled down and used like (0.6, 1, 1.4). The
cards can also be reused as many times as desired.

Input

Each case will begin with a single line containing three integers N (1 ≤ N ≤ 50), C (1 ≤ C ≤ 50),
and L (1 ≤ L ≤ 100), corresponding to the number of citizens, the number of instruction cards,
and the number of locations the Monarchy has chosen. C lines will follow, each will contain N
integers ai (-104 ≤ ai ≤ 104), indicating that the ith number on the instruction card is ai. Then L
lines will follow, each containing N integers pi (-109 ≤ pi ≤ 109), indicating that the Monarchy
would like citizen i standing at location pi for all i simultaneously.

Output

For each of the L sets of positions, output “YES” on a line by itself if the Monarchy can use the
cards to get the citizens to that set of locations, or “NO”, otherwise.

Samples

Input Output

3 3 2

1 1 0

4 -3 -1

0 -9 7

8 7 -3

-2 1 5

YES

YES

4 3 4

1 2 3 1

1 2 3 2

1 2 3 3

3 4 1 5

6 12 18 6

1 2 3 1

5 4 9 11

NO

YES

YES

NO

Problem H: Get Spencer Off Campus

Filename: spencer
Time limit: 1 second

Spencer is brilliant when it comes to algorithms but terrible when it comes to directions. He’s
been having trouble navigating his way around campus. So far, Charles has been helping him
find the lecture room, or Arup has been letting him just stay in HEC-101.

But this time, neither Arup nor Charles are around. You must help Spencer get off campus. If he
can’t leave UCF, Spencer won’t be able to earn a Gold Medal at IOI or attend MIT for that
matter! This project is a matter of national security. Don’t let Spencer down!

We model campus as a R x C grid of squares. Spencer will initially occupy a single one of those
squares. At any moment in time, Spencer can be facing one of four directions, up, down, left or
right. Some of the campus grid squares are obstructed and Spencer can not travel to those
squares. Otherwise, Spencer can move in a straight line in his current direction as many
squares as possible until there is an obstructed square, without any trouble. Alternatively,
Spencer can turn either left or right, which results in him staying in the same grid square, but
changing his direction. (If he wanted to do a u-turn, he would have to either turn left twice or turn
right twice.)

The goal of this problem is to get Spencer off campus. Since Spencer has extreme difficulty
following directions with many turns, the goal will be to get Spencer to any unobstructed border
square (in either the first or last row, or first or last column) using as few turns as possible.

Write a program to calculate the fewest number of turns necessary to get Spencer off campus,
so that he can bring glory back to the United States and attend his intended college. If this is not
possible, your program must report that the task is impossible.

Input

The first line of input has two integers R (3 ≤ R ≤ 50) and C (3 ≤ C ≤ 50), representing the
number of rows and columns, respectively, on the grid. The following R rows have a string of
precisely C characters. Each of these characters will either be ‘_’ , ‘X’, ‘N’, ‘S’, ‘W’, or ‘E’. The
character ‘_’ indicates a passable square. The character ‘X’ indicates an obstructed square
where Spencer can not travel. Of the four characters ‘N’, ‘S’, ‘W’ and ‘E’, exactly one of them will
appear in the grid and that character will appear exactly one time. The location of this character
represents Spencer’s initial starting square. The letter itself represents which direction Spencer
is initially facing, ‘N’ for North, ‘S’ for South, ‘W’ for west, and ‘E’ for east. It is guaranteed that at
least one square on the border of the board will not be an obstructed square.

Output

On a line by itself, output a single integer, indicating the fewest number of turns necessary for
Spencer to get off campus (to a border square). If it’s not possible for Spencer to do so, output
-1.

Samples

Input Output

5 5

XXX__

XNX_X

X_X_X

X___X

XXXXX

4

5 7

XXXXXXX

__XXX__

__XWX__

__XXX__

-1

Sample Explanation

In the first example, Spencer must turn either left or right twice, so that he’s facing South. Then
he will travel south two squares before turning left. Then he will travel two more squares east
before turning left again. From here, Spencer can go straight and get off campus to row 0,
column 3.

Problem I: Byteland Bands Together

Filename: together
Time limit: 2 seconds

Byteland is a very long rectangular land comprising of n different states arranged as contiguous
squares in a line. In order, these states are labeled 1 to n, from left to right. Historically, each
state had its own constitution, but the country has banded together to form a single unified
constitution!

In order to agree on a single constitution, the process to be used is as follows:

If the contiguous states from state i to j (i ≤ j) share a constitution and the contiguous states
from j+1 to k (j < k) share a different constitution, then the delegates from both groups, [i, j] and
[j+1, k] can meet for a convention in either state j or state j+1 to hammer out the differences and
agree on a single unified constitution for the contiguous states in the range [i, k]. Unfortunately,
hosting such a convention costs money. In particular, in order to entice each of the delegates to
attend the convention, the planners must buy each of them a famous Byteland Taco! Due to
differences in economies of the different states, the cost of the famous Byteland Taco varies
from state to state. In particular, in state i, the cost of a taco is ci. Also, the different delegations
from each state vary in size. The delegation from state i has mi members.Thus, the total cost for

holding the convention at state j is .cj ∑
k

p = i
mp

Over the course of n-1 conventions, Byteland will have its unified Constitution. Unfortunately,
depending on the order of these conventions, the total cost of unifications may vary significantly.
Although tacos are delicious, Byteland would like to minimize the cost of the tacos over all of the
conventions.

Given the cost of tacos in each state and the number of delegates from each state in Byteland,
determine the minimum cost of tacos required for the country to agree on a single Constitution.

Input

The first line of input contains a single positive integer n (1 ≤ n ≤ 500), representing the number
of states in Byteland. The next line of input contains n integers, the ith of which is mi (1≤mi≤105),
the number of members in the delegation from state i. The last line of input has n integers, the
ith of which is ci (1 ≤ ci ≤ 105), the cost of a taco in state i.

Output

Output the minimum cost of tacos necessary for the conventions for Byteland to agree on a
single constitution.

Samples

Input Output

4

1 9 6 3

3 6 9 1

145

2

1 6

9 3

21

